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NOTE 

A Stable Highly Accurate ADI Method for 
Hyperbolic Heat Conduction Equation 

The classical Fourier theory of heat conduction together with the energy conser- 
vation principle leads to the well-known parabolic equation 

c?T - aV2T. ae- (1) 

This equation predicts an infinite speed of propagation of thermal disturbances and 
hence from the physical aspect is not acceptable. The hyperbolic equation 

a2T aT 
r,&c78=&‘2T (2) 

developed by Cattaneo and Vernotte [l-4], following Maxwell’s intuition, has no 
such drawback and therefore is preferable from the physical point of view. In fact it 
allows for a finite value of the speed of propagation (LY/z,)“~. 

Although the effect of a finite speed of propagation is negligible in most practical 
conventional situations there is a steadily growing interest in Eq. (2). This is due to 
many special applications where finite wave speed theory can become important 
[S-10]. 

The object of this note is to present a stable highly accurate AD1 method suitable 
for numerical solution of the hyperbolic heat conduction Eq. (2), in two space 
dimensions. 

Introducing the following quantities: 

x = <IL Y = ilL, T’ = T- To, t = a%/L2, z = z,a/L2, 

Eq. (2) takes the form 

a2T ar a2r a2T -- ‘7+tat ax2 + ay2 at (3) 

Since the practical limitation on the spatial accuracy results from the “bandwith” 
of the system of equations which must be solved after discretization of (3), we 
restrict our attention to differences that produce tridiagonal systems. 
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A simple difference form of (3) based on rational approximation (see [ 11, 121) is 

The approximate value of T at the mesh point ih, jh, nk is denoted by T; and the 
classical operators: central difference 6 and averaging ,U are introduced for sim- 
plicity. The order of accuracy of difference scheme (4) is O(h2 + k2) and m, s are 
arbitrary parameters. 

Transforming (4) we get 

(~8; + k/+3,) (1 + ~62, + $8; + s262,6;) q 

=p’( 1 + ms:) (S’, + 8-Z + 2sCQ;) qj. 
(5) 

Adding the sixth-order terms m2p4/(2z + k) SjS-$,S,) to the left-hand side of (5) 
and transforming it further, Eq. (5) can finally be written in the split form 

2r*p,CY, [ I+ (s - mpZ/r*) sg [ 1 + (s - mpyT*) S’v] r, 

=p2( 1 - 2mV,) (S-: + 8; + 2s6;6;) qi + 2N,( 1 + s6-: + sst + s%;6t) T$, (6) 

F=z+k/2 and v,T”=T”-l-‘. 

The added terms do not alter the accuracy but enable the operator on the left-hand 
side of (6) to be factorized. 

The form of (6) more convenient for direct application is 

T* [l+(s-~p~/r*)6;] [l+(~--p2/r*)6t] T;+l 

=p2( 1 - 2m) (8; + 8; + 2s6;6;) q + 2T[ 1 + s(SZ + 8.;) + s%;6t] (q.- qP ‘) 

+r*[l+(s+mp2/r*)6;] [l+(S+mpyT.*)6t] q.-‘. (7) 

If r = 0, s = & and m = f or f, Eq. (7) takes the form of the known higher accuracy 
split formulas for parabolic equations [13]. 

To determine the accuracy of the two parameter family of difference schemes (7) 
the Taylor expansion of the terms on both sides of (7) is carried out about the 
reference node (ih,jh, nk). Subtracting the resulting terms on the right-hand side 
from those on the left-hand side, the principal part of the truncation error is found 
to be 

h4p2[(s-&)($$+$$+p2(&m)$+p2(;-m)$]. (8) 

Obviously all members of the family of the scheme (7) for arbitrary m and s have 
an order of accuracy O(h2 + k2). For s = l/12, we obtain formulas of accuracy 
O(h4 + k2) as was expected. 
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A standard von Neumann stability analysis of three-level difference schemes 
examines the eigenvalues li (i = 1, 2) of the amplification matrix. For formula (7) 
the roots of the appropriate amplification matrix are given by 

T*[1-4a(s-mp2/z*)] [1 -4h(s-n&*)] I2 

=-4p2(1-2rrt)(a+h-8sab)i+2~[1-4s(a+h)+16s2ab](~.-l) 
(9) 

+t*[l-4LZ(J+mJl*/T*)] [l-4h(S+Wlp'/T*)], 

where a = sin2 /lh/2 and h = sin* yh/2. Putting 

C, =r*[(l -4s~) (l-4&)+ 16m2p4/(t*)*], 

C, = 4p2(a + b - 8sab), 

C3 = 2~( 1 - 4.~) (1 - 4sb), 

(104 

(lob) 

(1Oc) 

Eq. (9) can be transformed to 

(C, + C,m) 1,’ - [C, - C,( 1 - 2m)] I + C, + C,m - C, = 0. (11) 

Since p > 0 and 0 6 a, b 6 1, then for s < l/4 all Cj (i = 1, 2, 3) are nonnegative. 
If the discriminant of (11) is negative then 2 = v + vi (v, q real), and from (11) we 

get 

v2 + ‘I* = 
C,-C,+C2m 

C, + C,m (12) 

Since the right-hand side term of (12) can be shown to be less than one, this case 
satisfies the condition for stability. 

If the discriminant of (11) is positive, then 

;I=Ci-C2(l -4m)+ [(C3-2C,)‘+C2(1 -4m)-C2C3]1’2 
2(Cl + C2m) 

(13) 

For m > l/4 the right-hand side of (13) is always less than one and so formula (7) is 
always stable in the von Neumann sense if s < l/4 and m > l/4. 

A stable (independent of time-step), highly accurate ADI method developed in 
this note provides the basis for the convenient numerical solution of the two-dimen- 
sional hyperbolic heat conduction problems encountered in practice. The 
modifications required in the method to cater to variable coefficients and arbitrary 
regions follow a pattern similar to those outlined in Chapter 2 of [ 131. 
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